

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY OF BASIC AND APPLIED SCIENCES DEPARTMENT OF PHYSICAL AND CHEMICAL SCIENCES

2016/2017 ACADEMIC SESSION: FIRST SEMESTER EXAMINATIONS

COURSE CODE: CHM 205

COURSE TITLE: STRUCTURE AND BONDING

HOD's SIGNATURE

DURATION:

TWO (2) HOURS

INSTRUCTIONS:

- ATTEMPT ANY THREE QUESTIONS.
- BORROWING OF WRITING MATERIALS, ELECTRONIC CALCULATORS OR LENDING OF ANY SORT IS STRICTLY PROHIBITED

QUESTION ONE

- a. The emission spectra of *Aurora Borealis* observed at 391nm is as a result of N_2^+ returning to its ground state. What is the energy gap between the molecular orbitals involved in the transition? (Planck's constant $h = 6-626 \times 10^{-34} \, \text{J}$ s, speed of light $C = 2.998 \times 10^8 \, \text{ms}^{-1}$
- b. Using the valence bond theory predict the structure and bonding in
 - i. BeF₂
 - ii. SF₆
 - iii. BCl₃
 - iv. SnCl₄

(Atomic numbers of elements: Be = 4, B = 5, F = 9, S = 16, Cl = 17, Sn = 50)

QUESTION TWO

- a. Define the following terms
 - i. Bond length
 - ii. Isoelectronic species
 - iii. Bond order
 - iv. van der Waal's radius
- b. Complete the following equations stating the conditions for the reactions where necessary
 - i. $H_2O + P_4O_{10} \rightarrow$
 - ii. $H_3PO_4 \rightarrow ? + H_2O$
 - iii. $HClO_4 + ? \rightarrow Cl_2O_7 + H_3PO_4$
- e. Which of the following molecules are isoelectronic species? B₂H₄²⁻, B₂H₆, B₂H₄²⁻, BH₄, NO, C₂H₄, O₂, NF, CH₄
- d. Define all the quantum numbers that characterize an electron.

QUESTION THREE

- a. Using the Heisenberg uncertainty principle, calculate the uncertainty in the position of
 - 1.50mg of mosquito moving at a speed of 1.4m/s
 - ii. A proton moving at a speed of 5.00×10^4 m/s. (mass of a proton is 1.673×10^5
- b. Use the De Broglie relationship to determine the wavelength of the following objects
 - i. An 85.0 kg person skiing at 50km.hr
 - ii. 10.0g bullet fired at 250m/s
 - iii. An ozone (O₃) molecule in the upper atmosphere moving at 550m/s.(atomic mass of oxygen = 16)
- c. Using molecular orbital theory arrange the following species in order of decreasing bond strength and length: O_2^{2-} , O_2^{+} , O_2 and O_2^{-}
- d. Predict if it is possible to form the He₂⁺ and He⁺ ions

QUESTION FOUR

- Explain how the existence of line spectra is consistent with Bohr's theory of quantized energies for the electron in hydrogen atom.
- b. State the limitations to Bohr model of the line spectrum.
- c. Explain why the N O bond length decreases for the following species in the order NO_2 > NO_2 > NO_2 +
- d. The first 3 lines in the spectrum of atomic hydrogen is assigned the following wave number: 82258, 97491, 102822 cm⁻¹. Show that they fit the equation and derive an accurate value for the Rydberg constant for Hydrogen

$$\bar{v} = R \left[\frac{1}{N_1^2} - \frac{1}{N_2^2} \right]$$
, where $N_2 = 2, 3, 4$ and $N_1 = 1$

QUESTION FIVE

- a. Using molecular orbital theory predict the stability of Li₂ and Be₂
- b. Determine the longest wavelength of light that the ground state C_2^+ ion will absorb assuming the ground state energy is 1.602x10 ⁻¹⁸ J.
- c. State the Heisenberg uncertainty principle
- d. State the Hund's rule and Pauli exclusion principle
- e. Define the following
 - Polar covalent bond i.
 - ii. Non polar covalent bond
 - iii. Electronegativity
 - iv. Dipole moment